INDONESIAN FISHERIES RESEARCH JOURNAL

Volume 14 Number 1 Juni 2008
Acreditation Number: 101/Akred-LIPI/P2MBI/10/2007
(Period: November 2007-November 2010)

Indonesian Fisheries Research Journal is the English edition of fisheries research journal. The first published in 1994 with publishing frequently is once a year. Since 2005, this journal published twice on JUNE and DECEMBER.

Head of Editor Board:
Prof. Dr. Ir. Endi Setiadi Kartamihardja, M.Sc.

Members of Editor Board:
Prof. Dr. John Haluan
Dr. Ir. Subhat Nurhakim, M.S.
Dr. Ir. Wudianto, M.Sc.
Dr. Ir. Indra Jaya

Refrees for this Number:
Prof. Dr. Ir. Ari Purbayanto, M.Sc. (Bogor Agriculture Institute)
Dr. Ir. Setyo Budi Susilo, M.Sc. (Bogor Agriculture Institute)
Dr. Ir. Augy Syahailatua (Research Center for Oceanography-Indonesian Institute for of Science)

Managing Editors:
Dra. Endang Sriyati
Arvy Herdianto Firmansyah

Published by:
Agency for Marine and Fisheries Research

Manuscript send to the publisher:
Indonesian Fisheries Research Journal
Research Center for Capture Fisheries
Jl. Pasir Putih I Ancol Timur Jakarta 14430 Indonesia
Phone (021) 64711940
Fax: (021) 6402640
Email: rccf_office@indo.net.id

Indonesian Fisheries Research Journal Volume 14 Number 1 June 2008 is the first published of Research Center for Capture Fisheries in 2008. The second number of journal will be published in December 2008. This journal to expand communication among fisheries scientiest entirely part of the country well as other scientific in the tropical countries. This journal is financially supported by the Research Center for Capture Fisheries, budgeting fy 2008.

This volume of the journal compose of sex articles with focused on six articles about sea fisheries resources. They are millenium gillnet in Cirebon, deep sea shrimp resources in the Southern Java, accoustic observation and exploitation of the purse seine in the Java Sea, spatio temporal distribution of small pelagic fish in the Java Sea, aggregation of Holothuria on seagrass area of Medana Bay, and estimated unrecorded catch related to the number of licenced fishing vessel in the Arafura Sea.

We would like thanks to the refreees their effort and contribution in review and correcting the manuscripts.

Editor
PREFACE ... i

CONTENTS .. iii

Studies on Capture Process and Fish Behaviour Towards Millennium Gill Net in Bondet Waters, Cirebon
By: Carolina Catur Rakhmadevi, Ari Purbayanto, and M. Fedi A. Sondita .. 1-6

Potential Yield of Deep Sea Shrimp Resources in the Southern Java of the Indian Ocean EEZ Waters
By: Ali Suman, Muhammad Rijal, and Gatut Bintoro .. 7-14

The Acoustic Observation and the Exploitation of the Purse Seine Fishery in the Java Sea
By: Duto Nugroho, Bonar P. Pasaribu, and Vincent P. Siregar ... 15-20

Spatio Temporal Distribution of Small Pelagic Fish in the Java Sea
By: Wijopriono ... 21-35

Aggregation of Holothuria (Metriatyla) albiventer Semper (1868) (Echinodermata: Aspidochirotida) on
Seagrass Area of Medana Bay, West Lombok
By: Pradina Purwati, Pitra Widianwary, Sigit Anggoro Putro Dwiono, and Oktavianto Samir....................... 37-42

Estimated Unrecorded Catch Related to the Number of Licensed Fishing Vessel in the Arafura Sea
By: Badrudin, Subhat Nurhakim, and Budi Iskandar Prisantoso ... 43-49
AGGREGATION OF Holothuria (Metriatyla) albiventer SEMPER (1868) (ECHINODERMATA: ASPIDOCHIROTIDA) ON SEAGRASS AREA OF MEDANA BAY, WEST LOMBOK

Pradina Purwati1), Pitra Widianwary1), Sigit Anggoro Putro Dwiono2), and Oktavianio Samir3)

1) Research Center Oceanography, Lembaga Ilmu Pengetahuan Indonesia, Ancol-Jakarta
2) Technology Implisit Unit Marine Biology Industry, Lembaga Ilmu Pengetahuan Indonesia, Mataram
3) Faculty Biology, National University, Jakarta

ABSTRACT
Mapping technique has not been popular in holothurian monitoring procedures. We introduced the use of global positioning system to determine the local distribution pattern and estimate the individual number of Holothuria albiventer at Medana Bay, West Lombok, Indonesia. During ebb tide in the afternoon, when Holothuria albiventer were exposed, each individual found was marked and their positions were subsequently overlaid on a thematic map of Medana Bay. The results showed that 408 individuals of the species aggregated on a specific site of 894.47 m², where coverage area of the sea grass reached 90%. Map of the distribution of holothurian populations in particular areas facilitated accuracy in estimating the potential of any holothurian species, and efficiency in monitoring efforts.

KEYWORDS: Holothuria albiventer, mapping technique, aggregation, density, Medana Bay, West Lombok

INTRODUCTION
Different methods applied to estimate the density and abundance of holothurians may give different results. Besides, timing of data collection in situ holothurian observation should be considered essentially important as several holothurian species are cryptic and/or nocturnal as species mentioned by Mercier et al. (2000); Wiedmeyer (1992); Purwati (2006a).

Most publications on holothurian abundance including Mendes et al. (2006); Uthicke (2001); Yusron (2001); Wagiyo et al. (1999); Triana (1996); Aziz & Sugiarito (1994); Radjab & Yusron (1994); Hartati & Wahyuni (2003); Banjar et al. (1988), applied transect methods on seagrass areas. Considering that each holothurian species may require specific microhabitat (Purwati et al., 2006a), applying transect methods on a heterogeneous environments to estimate the individual density may need as many quadrants as could be done. Otherwise, the result may not be reliable. Manta tow technique has also been popular for holothurian monitoring such as that at the Great Barrier Reef for Holothuria nobilis (Uthicke & Bezie, 2000). In comparison, global positioning system marking technique to estimate density of holothurians has never been reported.

Similar to other holothurians such as Bohadchia marmorata, Holothuria albiventer shows burying behavior. However, the first mentioned species from Micronesian waters keeps emerge until dawn (Clouse, 1997), while the second mentioned species at Medana Bay back to uncover coincidently with the raising tide (Purwati et al., 2006a).

Holothuria (Metriatyla) albiventer Semper, 1868 has been reported to distribute throughout west Indo Pacific, and Ambon in Central Maluku is the type locality (Cark & Row, 1971; Semper, 1868). Among the limited reports on the presence of this species in other Indonesian waters, Sluiter (1901) describes specimens collected from Labuan Tring, Lombok during Sibolga Expedition 1899 to 1900. Whilst, holothurian collections from Ambon and Spermonde waters which have been taxonomically studied by Massin (1996; 1999) lack of this species. At Medana Bay, West Lombok, Nusa Tenggara Timur, this species shares habitat with other 21 holothurian species, which uncover themselves during lowtide in the afternoon (Purwati et al., 2006a).

MATERIALS AND METHODS
Species Confirms
Because reports on the presence of Holothuria albiventer in Indonesian waters was rare, specimen of Holothuria albiventer was necessary to be identified through their integument spicules. The spicules were isolated from the dorsal and ventral skin. Domestic bleaching commonly sold in the supermarkets was used to dissolve the flesh tissue and collect the spicules. The technique and species identification referred to Clark & Rowe (1971); Semper (1868).
Distribution and Density

Medana Bay, Pemenang, West Lombok is located at 116º7'24.30"-8º9.9" W and 8º21'54.6-31" S. The area is influenced by semi diurnal tide. Periodic monitoring previously conducted in Medana Bay showed that the holothurians appeared during low tide in the afternoon (Purwati et al., 2006a; 2008 in press). In view of that, in situ observation was conducted on July 2007 when tide was about ebb. While reef walking, each individual found was identified and recorded in global positioning system. Collected data were then overlaid on a thematic map to locate the preferred areas of *Holothuria albiventer*. By applying this technique, the number of individuals and area of the given species were provided.

RESULTS AND DISCUSSIONS

Species Confirms

All specimen were in medium size (less than 15 cm), tapering on both posterior and ventral tip. Skin (integument) was rough and firm. Integument was light brown with 2 rows of dark blotches on the dorsal. Papillae were short, and mainly on the lateral side, the papillae enlarged on the base. Ventral sides were slightly flattened, tube feet were not in rows, mainly emerged from the rounded white areas.

![Holothuria (Metriatyla) albiventer](image)

Figure 1. *Holothuria (Metriatyla) albiventer* Semper, 1868: dorsal view and spicules from the dorsal integument (above); ventral view and spicules from the ventral integument (below).

Spicules were dominated by buttons and tables which characterized members of genus Holothuria. Buttons were knobbed, the edge was smooth. Tables were stout, disc was with many small holes or with 4 central larger holes encircled by smaller holes. Spire was short, crown was spinous. Tables formed tack-like in several specimens. Rods enlarged at the midle containing holes, rarely branching. Tips enlarged with holes. These characteristics suited *Holothuria (Metriatyla) albiventer* Semper, 1868 (Figure 1).

Distribution and Density

A total of 408 positions of *Holothuria albiventer* was marked. The authermost positions were bordered area of 894.47 m² (Figure 2). The density was estimated 0.44 ind. m⁻². Three individuals were found far away from the aggregation. Other species found in the same habitat were *Holothuria scabra*, *B. similis*, *Stichopus vastus*, and *S. quadrifasciatus*.

Discussion

More than one third of national publications on holothurians give information on population density (Purwati & Darsono, 2007), which part of it was showed in Table 1. Most of them estimated densities of multi spesies in seagrass habitats through transect procedures. Type of distribution patterns was not clear.

Holothuria albiventer density of 0.44 ind.m⁻² or abundance of 408 individuals in area of almost 900 m² at Medana Bay may or may not be considered
dense. Fishing on this species has never been recorded during 2 year project, and the environment destruction in terms of pollution and significant habitat disturbance were minimum. Possibly, the density was ideal for the carrying capacity of study site for the *Holothuria albiventer* population. Whilst, comparison was not possible to do as this species had never been studied except in taxonomy by Sluiter (1901); Semper (1868).

The use of global positioning system to locate *Holothuria albiventer* prevented from repeated count. Map which was developed from the individual locations illustrated the distribution pattern on the habitat, and gave specific area of their microhabitat. Furthermore, the potential of given population in particular heterogenous area can be estimated more accurately. By developing such map, monitoring could be done more efficiently.

At Madana Bay, *Holothuria albiventer* occupied relatively small area, and habitat shared with other species including *B. similis* and *S. vastus*. This was different from *Holothuria atra* which were found inhabiting exclusive area north ward of the *Holothuria albiventer*’s (Purwati et al., 2006a). This may illustrate that a practice of transect methods may not be effective if the distribution patterns of the given species were not knowing. In larger areas, more global positioning system operators may be needed to cover the whole area and do positioning records simultaneously.

External factors such as water current, shelter, and food availability which play important roles on the distribution of *Holothuria albiventer* population may
change. Therefore, area occupied by this population is possible to alter, and will be an interesting area for future research to discover the clue factors of preferred microhabitats.

Mendes et al. (2006) differs intertidal and subtidal strata on estimating the density of *Holothuria grisea* at Santa Catrina Coast, southern Brasil. Not less than 25 quadrants (1 m² each) have been set up on 400 m² of each area. Subtidal stratum shows higher density (4.4 to 8.04 ind. m⁻²) than the intertidal stratum (1.6 to 3.8 ind. m⁻²) in all seasons except in autumn. Aggregation of the individuals are correlated with the high rock rugosity and the presence of holes and crevices. This species, unlike *Holothuria albiventer*, lives on rocky bottom.

Purwati et al. (2006a; b) uncovered the distribution patterns of several holothurian species at Medana Bay. At least 16 species (more than 700 individuals) occupied southern side of the bay, and aggregated into 5 groups. Using multi dimensional scalling analyses on their sediment particle size, total organic matters, and coverage area of seagrass, it was obvious that those groups represented four microhabitats. The site where *Holothuria albiventer* lived was composed of >60% medium size particles (0.25 to 2.0 mm) and <17% fine particles (up to 0.125 mm), with total organic matters 2.62 to 4.94% (± 3.81%). Seagrass was 40 to 62.5% coverage with dominant species *Thalassia hemprichii* and *Enhalus acoroides*. In the case of Medana Bay, such characteristics of the habitat may provide more holothurian requirements, as more species (13 species) and individuals (more than 400 individuals) were habitat shared, compared to the other microhabitats. More detailed results will be presented in a separate paper.

While mapping technique for holothurian monitoring gave more information on shallow waters, in deeper zones where global positioning system may not be reliable due to limited satellite connections, modification on the technique is necessary.

Table 1.

Estimated densities of holothurian populations reported from several locations throughout Indonesian waters

<table>
<thead>
<tr>
<th>Locations</th>
<th>Survey year</th>
<th>Density</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>Biak, Papua</td>
<td>1982</td>
<td><1 ind. m⁻²</td>
<td>Sloan & Uktolseya (1993)</td>
</tr>
<tr>
<td>Nusa Tenggara</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Weri and Larantuka</td>
<td>1993</td>
<td>20 ind. per are</td>
<td>Prahoro & Nurasa (1994)</td>
</tr>
<tr>
<td>Ekas, Batu Ampar, NTB</td>
<td>1991</td>
<td>0.19 ind. m⁻²</td>
<td>Prahoro & Suprapto (1991)</td>
</tr>
<tr>
<td>Lombok Selatan</td>
<td>1993</td>
<td>0.03-0.34 ind.m⁻²</td>
<td>Aziz & Sugiarito (1994)</td>
</tr>
<tr>
<td>Medana Bay, West Lombok</td>
<td>2006</td>
<td>408/894.5 ind.m⁻²</td>
<td>Present study</td>
</tr>
<tr>
<td></td>
<td></td>
<td>11 ind.m⁻²</td>
<td></td>
</tr>
<tr>
<td>Maluku</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Kular, Saparua</td>
<td>1987</td>
<td>0.05-0.54 ind.m⁻²</td>
<td>Andamari et al. (1988)</td>
</tr>
<tr>
<td>Morella, Ambon</td>
<td>1997</td>
<td>0.12-1.03 ind.m⁻²</td>
<td></td>
</tr>
<tr>
<td>Bay of Un, Tual</td>
<td>1993-1994</td>
<td>0.06-0.5 ind.m⁻²</td>
<td>Radjab (1996)</td>
</tr>
<tr>
<td>Sulawesi</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Kolaka, Southeast Sulawesi</td>
<td>1988-1989</td>
<td>6 ind. per 8 ha</td>
<td>Nuraeni et al. (1990)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0.22-2.02 ind.m⁻²</td>
<td></td>
</tr>
<tr>
<td>Bunaken, north Sulawesi</td>
<td>1997</td>
<td>17 ind. 3.750 m⁻²-</td>
<td>Lane (1999)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0.96-1.02 ind.m⁻²</td>
<td>Tamanampo et al. (1989)</td>
</tr>
<tr>
<td>North Sulawesi</td>
<td>1992-1993</td>
<td>0.055-0.8 ind.m⁻²-</td>
<td>Radjab & Yusron (1994)</td>
</tr>
<tr>
<td>Sumatera</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mentawai, west Sumatera</td>
<td>1997</td>
<td>1-29 ind. 300 m²</td>
<td>Djamali et al. (1998)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(0.003-0.09 ind.m⁻²)</td>
<td></td>
</tr>
<tr>
<td>Jawa</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Karimun Jawa</td>
<td>1992</td>
<td>0.009 ind.m⁻²</td>
<td>Wagiyo et al. (1999)</td>
</tr>
<tr>
<td>Saepken, Madura</td>
<td>1992</td>
<td>30 ind. per ha</td>
<td>Suprapto et al. (1992)</td>
</tr>
<tr>
<td>Pari I., Seribu i.</td>
<td>1976-1979</td>
<td>0.36-0.78 ind.m⁻²</td>
<td>Aziz & Darsono (1997)</td>
</tr>
<tr>
<td></td>
<td>1980-1994</td>
<td>0.13-0.18 ind.m⁻²</td>
<td></td>
</tr>
</tbody>
</table>
ACKNOWLEDGEMENT

The manuscript is drawn from an intensive research supported by CoML-Competitive/Lembaga Ilmu Pengetahuan Indonesia Program 2005-2006. Thanks are delivered to Dr. D. Setiapermana & Dr. K. O. Sumadihagara for their critical questions during the project. The assistance of the team members including Mr. B. Mauliputra, Mr. B. Kaplale, & Mr. N. Tarmin is acknowledged.

REFERENCES

Sluiter, C. Ph. 1901. Die Holothurien der Siboga Expedition. Siboga Expedition. 44. 1-142. pls 1-10.

Indonesian Fisheries Research Journal publishes research results on resources, oceanography and limnology for fisheries, fisheries biology, management, socio-economic and enhancement, resource utilization, aquaculture, post harvest, of marine, coastal and inland waters.

Manuscripts submission

Manuscripts submitted to the Journal must be original with clear definition of objective, materials used and methods applied and should not have been published of offered for publication elsewhere. The manuscripts should be written in English, in double-spaced typing on one side A4-size white papers. Three copies of the manuscripts and a disk containing the manuscript file (s) produced using MS Word must be submitted to the Managing Editor, Jl. Pasir Putih I Ancol Timur, Jakarta 14430, Indonesia, E-mail: rccf_office@indo.net.id. There are no page charges for the manuscripts accepted for publications, unless otherwise indicated below.

Manuscripts preparation

- A title page should be provided which shows the title and the name(s) of the author(s). The author(s)' position and affiliation should be written as footnotes at the bottom of the title page.
- Title should not be more than 15 words.
- Abstract summarizes the study is not more than 250 words. Keywords (3-5) must be provided and conform with Agrovocs.
- Introduction should concisely establish the relate to which the article concerns, the purpose and the importance of the work. Do not use any sub-headings.
- Materials and Methods should clearly and concisely describe the experiment with sufficient detail for independent repetition.
- Results are presented with optimum clarity with unnecessary detail. No same results should be presented in both tables and figures. Tables (double spaced, same font size with text, no vertical line, lower case supercript letters to indicate, footnotes), and illustration/figures should be printed on separate sheets and given arabic number consecutively. Illustration/figures should be submitted in original (1) and copied (2) forms and be sufficiently sharp for reproduction. Photographs are preferably black and white on glossy papers with good contrast. Color photographs of good quality are acceptable but the cost of reproduction must be paid for by the author(s). Exemption for bearing the cost can be sought from the publisher by written request.
- Conclusion should be short with regard to the title, objectives, and discussion of results.
- Acknowledgement, if necessary, should be kept minimum (less than 40 words).
- References should be cited in the text by the author(s)' family or last name and date in one or two forms: Wang (1985) or (Wang, 1985). For references with more than two authors, cite the first author plus et al. Full citation in alphabetical order is required for the references list in the following style:
- Unpublished materials should not be used, except for thesis which is cited as follows:
- Acronyms or uncommon abbreviations must be given in full with the first mentions; new abbreviations should be coined only for unwieldy name and should not be used at all unless the names occur frequently.
- Latin name and family of the species should be given besides its common name at first mention in the manuscript, and the common name only for the next mentions.
- SI Systems should be used for all measurements.
- Reprint: A free reprint of the journal issue in which the paper is published will be sent to the author.