Association of Sexual Maturation and Body Size of Arfak Children

ELDA IRMA JEANNE JOICE KAWULURI∗, BAMBANG SURYO BROTO, SRI BUDIARTI, ALEX HARTANA

Department of Biology, Faculty of Mathematics and Natural Science, Bogor Agricultural University,
Darmaga Campus, Bogor 16680, Indonesia

Received June 11, 2012/Accepted September 3, 2012

Gonad maturation in pubertal boys and girls is accompanied with somatic growth spurt, changes in quantity and distribution of body fat (BF), development of secondary sex characters, and relevant physiological events. Menarche (first event of menstruation) and spermarche (first event of nocturnal sperm emission) are usually used as indicators of gonad maturation. We found that median age at menarche of Arfak girls in Manokwari, West Papua is 12.2 years, while median age at spermarche of boys is 13.6 years. A possible factor causing young age at menarche is due to adaptation to unstable environmental conditions because of high risk of mortality by malaria disease during childhood. The events of menarche and spermarche achieved one year after the peak body height (BH) velocity, and just before or at the same time with the time of maximum growth rate of body weight (BW), body mass index (BMI), and BF. The average BMI of Arfak girls was big at 21.9 kg/m² at the time of their menarche. Bigger average BMI might be caused by prepubertal slowing down of BH growth compare to growth of BW which is still increasing. Girls accumulate BF before puberty to be used as an energy reserve for the occurrence of menarche. At the time of development of secondary sexual characters girls use the fat reserve so it decline sharply after puberty. In boys, growth rate of BF was stopped at 11 years old, and then growing negatively presumably because boys use fat mass for the occurrence of spermarche. BF growth rate reached the lowest point at the age 16 years old, and then increase linearly with age through adolescence until adulthood at age 23 years old.

Key words: Arfak, menarche, spermarche, body height, body weight, body fat

INTRODUCTION

Menarche and spermarche are usually used as indicators of gonad maturation for girls and boys, respectively (Ammari et al. 2004; Malina et al. 2004; Dakshayani et al. 2007). On the other hand, indicators for somatic growth are conventionally sought for in age-related changes in body BH and BW. BH describes the general status of bony skeleton (Loesch et al. 1995). Growth of weight relates to changes in fat, muscle, and bone masses (Malina et al. 2004). Growth spurt in body size is usually measured based on its rate, age at the peak velocity, and age at take off (Abassi 1998; Malina et al. 2004).

There are several hypothesis to explain the association of physical growth to the age at menarche. Simmons and Greulich (1943) proposed that skeletal development is strongly correlated with age at menarche. Chang et al. (2000) and Puspita (2004) provide data that peak height velocity reached one year before menarche, then slows down thereafter, and stopped because of the closing of epiphyses in long bones. Therefore, skeletal growth is often used as an accurate predictor of age at menarche. Other hypothesis is the hypothesis of BW by Frisch and Reveille (1970). Frisch and Reveille (1971) and Anderson et al. (2003) showed that menarche had a closer association to BW than to BH of the girls. Under-nutrition, which lowers BW, delays the age at menarche (Frisch 1972; Kulín et al. 1982; Leenstra et al. 2005). On the other hand, increase in BW relates to acceleration of age at menarche (Anderson et al. 2003). Still, other hypothesis explains the distribution of BF and level of leptin to relate to age at menarche (Lassek & Gaulin 2007). The study explains that gluteofemoral fat in girls have higher leptin level compared with other parts of the body during puberty.

Study on the association between age at spermarche and growth of body size is rare. Several studies on China, Denmark, France, Hungarian, and Copenhagen present
growth chart of body size, age at spermarche, and urinary excretion of spermatozoa. However, none of these studies showed the relationship between age at spermarche and body size (Schaefter et al. 1990; Pedersen et al. 1993; Yan et al. 1999; Rochebrochard 2000; Ji 2001; Bodzsaar & Zsakai 2007; Janssen 2007; Zhu et al. 2009). On the other hand in Sragen (center of Java) peak height velocity of the boys is reported to reach at the same time as their age at spermarche; however, their peak weight velocity reached before that (Suratno 2009). Therefore, BW can be used as early indicator of age at spermarche.

Papua (the Netherlands New Guinea, or Irian Jaya) is western part of New Guinea. In Papua there are approximately 269 languages (Mansoben 2007), and thus possibly 269 tribes. They are considered as belonging to Australoid race. Arfak is one of the tribes that inhabit Manokwari, West Papua Province. The tribe is divided into four subtribes: Hattam, Meyah, Sough, and Moile. They are semi-nomadic people with semi-permanent residence. They live in hunting, gathering, and subsistent farming with shifting cultivation system (Hastanti & Yeni 2009). The study of age at menarche and spermarche has not been done in Arfak tribe, including its association with somatic maturation. The purpose of this study is to determine the age at menarche and spermarche of Arfak children, and to learn how they are indicated by BH and BW.

MATERIALS AND METHODS

Subject. Children and adolescents of Arfak tribe comprised of 231 girls (ages ranged from 6 to 19 years) and 283 boys (ages ranged from 6-23 years), were observed in Manokwari, West Papua province. A cross sectional study of sexual development and anthropometric measurement was conducted during September 2010 to April 2011. Each subject or parent was explained a complete description and objectives of this study, and only if they understood and agreed to participate that they are included asa sample. They were asked to sign the letter of informed consent, and completed a questionnaire on their child birth dates, ethnicity, and other demographic data.

Measurement. Age was determined by calculating the difference between the date of measurement and the date of birth; it is divided by 365.25 to get age in years (Kuczmarski et al. 2002). Age at menarche or age at spermarche was determined based on status quo method (Malina et al. 2004).

BW and BH measurements followed manual procedure of NHANES III (1988). Indicator of fat mass used standard formula of World Health Organization (WHO 1995): BMI = BW/BH^2 (kg/m^2). Bio-impedance analysis (OMRON HBF-306) was used to estimate BF.

Data Analysis. Average age at menarche and age at spermarche was determined by Probit-GLM (Generalized Linear Model) method (Venables & Ripley 1999). Horizontal line drawn from the probability of 50% cuts probit curve at a point. This point is the approximate age of the median age at menarche or age at spermarche.

Growth chart of BH, BW, BMI, and BF were presented at 11 level of percentiles (2.3, 3, 5, 10, 25, 50, 75, 85, 95, 97, and 97.7%) using generalized additive models for location, scale and shape (GAMLSS) (Rigby & Stasinopolous 2005). These chart were based on standard chart with 3 to 97% percentiles which were recommended by WHO for using internationally in the assessment of physical growth and nutritional status of children (Kuczmarski et al. 2002). In preliminary study, outliers, which were detected as individuals beyond 2.3 and 97.7% percentiles, were eliminated in trying to get norms of growth pattern. Average growth pattern of BH, BW, BMI, and BF were obtained from 50% percentiles. Using this curve, velocity is measured as the increase of body size within a year.

Using Kuczmarski et al. (2002) and McCarty et al. (2006) classification, nutritional statuses based on BMI and BF were determined. A child is defined as underweight if BMI was lower than the value at 5% percentile, at risk for overweight if BMI ranges in the 5-15% percentile, normal if BMI ranges in the 16 to 84% percentile, overweight if BMI ranges in the 85 to 94% percentile, and obese if BMI is higher than 95% percentile (Kuczmarski et al. 2002). Based on BF, McCarthy et al. (2006) selected the 2% percentile to define the upper limit of underfat, and the 85 and 95% percentiles to define the lower limits of overweight and obese.

All anthropometric data were statistically analyzed in the Section of Biosystematic and Ecology of Animals, Department of Biology, Bogor Agricultural University. Statistical procedures were performed using the R software version 2.10.0 (R Development Core Team 2010).

RESULTS

Sexual Maturation and Growth Rate of Body Size. Arfak girls experienced menarche at the age of 12.2 years, while Arfak boys began spermarche at the age of 13.6 years (Figure 1). The relationship between the age at menarche or spermarche and their age-related changes in BH, BW, BMI, and BF are showed in Figure 2 to 5, respectively.

The growth rate of BH in girls started to increase at 9 years old, and reached maximum at the age of about 11 years old, and return to take off at age of 14 years old. In the age of 17 years old, growth rate in height of girls stopped and tend to be negative between 18-19 years old. On the other hand, the rate of BH in boys tended to be stable at the age of 7 to 9 years, started to increase at 10 years, and reached maximum at the age about 13 years, then return to take off at age of 14 years, and declined after that. BH was practically stopped to grow in the age of 22-23 years (Figure 2). The age of puberty of girls and boys were reached one year after their BH grow at maximum rate (Figure 2).

BW growth rate of Arfak girls tended to take off at 9 years old, and continued to increase until reached a peak at age 12 years old, after that the growth rate of BW return to take off at age 15 years old. BW growth rate of Arfak boys started to increase at 9 years old, then reached a
Figure 1. Age at menarche of Arfak girls (left) and age at spermatarche of Arfak boys (right).

Figure 2. The growth velocity of BH in girls and age at menarche (left), the growth velocity of BH in boys and age at spermatarche (right).

Figure 3. The growth velocity of BW in girls and age at menarche (left), the growth velocity of BW in boys and age at spermatarche (right).
peak at 14 years old, after that return to take off at 18 years old, and relatively stable at age 23 years. (Figure 3).
Menarche and spermarche age of Arfak children reached at the same time as their maximum BW growth rate.

In Arfak girls, BMI growth rate tended to take off at 9 years old, and continued to increase until a peak at age 13 years old, after that the growth rate of BMI return to take off at age 16 years old; while for Arfak boys BMI growth rate reached the age of take off, peak, and return to take off similar to BW growth rate at the age about 9 years old, 14 years old and 18 years old, respectively (Figure 4). Menarche of girls achieved before growth rate of BMI reached maximum, while age at spermarche of boys reached at the same time as their growth rate of BMI reached maximum. Most Arfak children were categorized healthy since their BMI distribution were between 16-84% percentile.

The growth rate of BF of girls reached maximum at 12 years old, and then decreased sharply, while boys tended to be negative from 11 to 16, then turn to positive (Figure 5). Menarche of girls reached at the same age with maximum growth rate of girls BF, while spermarche of boys reached at the age before the rebound of BF rate.

DISCUSSION

Age at Menarche and Spermarche. The large variation of age at menarche between population is influenced by environment and genetic factors (Zacharias & Wurtman 1969; Graham et al. 1999; Thomas et al. 2001; Sun et al. 2002; Malina et al. 2004; Mokha et al. 2006). The population of Arfak tended to get menarche (12.2 years) at the same time with or younger than that of Indonesian girls from urban/rural areas and NCHS/WHO reference data(Table 1). People living in urban area tend to have better nutrition and living conditions than those in rural area, thus they might achieve earlier age at menarche. On the other hand, malnutrition and lower standard of living associated with the rural living environment lengthen the age of puberty. The finding in this study reveals an interesting fact that despite approximately 20.3% adolescents of Arfak are categorized as underweight or
malnutrition (Table 2), 79% of their parents are hunter-gatherer and subsistence farmers, and they live in relatively underdeveloped living condition, the age at menarche tended to be earlier than that of Indonesian girl from rural area, or the same with Indonesian girls from urban area.

A possible factor causing younger age at menarche of Arfak girls despite they live in underdeveloped living condition was due to an adaptation to risk of death caused by diseases and malnutrition (Walker et al. 2006; Migliano et al. 2007). Arfak population lives in relatively high risk of mortality by malaria disease (Murthiapsari & Chasanah 2010). Based on the global map of malaria endemicity (Hay et al. 2009), Papua is the highest prevalent zone in Indonesia. Walker et al. (2006) argued that such unstable environment triggers the rapid bodily development in the childhood and juvenile ages, resulting in younger age at puberty. In this adaptive strategy human will shorten their life cycles to optimize their reproduction (Buunk et al. 2009). This strategy will increase the chance to contribute their genes to the next generation.

The average spermarcheal age of the Arfak boys (13.6 years) was older compared to that of Javanese boys (12.6 years, Suratno 2009). The sample of children in Java came from families with high socio-economic background that likely were of a factor to accelerate the growth and development leading to puberty. In contrast, they were younger as compared to that in Shaanxi China (13.8 years at urban and 14.2 years at rural, Yan et al. 1999), France (14.2 years, Rocherbrochard 2000), and Denmark (14.7 years, Zhu et al. 2009). The sample of children in Shaanxi-China, France and Denmark came from rural/urban area, and their socio-economic background varied. The data used in the study of Shaanxi-China was collected at 1995, in France was from 1975 to 1978, and in Denmark was from 1984 to 2005. There is difference in time between present study and data collection of those studies. This difference might lead to secular trend effect on those population which may reduce the ages, so we can say that the Arfak boy tend to have similar age at spermarche with them.

The Association of Sexual Maturation and Body Size. The association of sexual maturation to body size has the same pattern between girls and boys of Arfak tribe. The events of menarche and spermarche achieved one year after the peak BH velocity, and just before or at the same time with the time of maximum growth rate of BW, BMI, and BF.

Young girls gain weight to reach critical values of BMI for the occurrence of menarche. In Javanese population average girls get menarche when they reach BMI of 19.5 kg/m² (Suhartini 2007). However the average BMI of Arfak girls was 21.9 kg/m² at the time of their menarche which is bigger than that of Javanese girls. Bigger average BMI might be caused by prepubertal slowing down of BH growth comparing to growth of BW which still increasing. This high value of BMI might also be a cause in explaining the lighter BW of Arfak population compare to BW of Colorado population when they get menarche. BW of 46.5 kg at Arfak population is enough compare to 48 kg of Colorado population (Frisch & Revelle 1971) to get menarche because their BMI is big.

Based on two-compartment model of body composition, the body is divided into two parts, fat mass and fat free mass (Lukaski 1987; Ellis 2000; Dorosty et al. 2000; Heymsfield et al. 2000; Yao et al. 2002; Henche & Pellico 2005; Vehrs & Hager 2006). Measurement of BMI (a common indicator for fat mass) and BF play a role in the assessment of human body composition. Before menarche, BF growth rate of Arfak girls tended to increase, and then decrease sharply. Girls accumulate BF before puberty to be used as an energy reserve for the occurrence of menarche. At the time of development of secondary sexual character girls use the fat reserve so it decline sharply after puberty. On the other hand, BMI growth rate also decrease but not sharply compare to BF growth rate. This difference might be caused by development of muscle and bone mass which is still growing after menarche.

In boys, growth rate of BF was stopped at 11 years old, and then growing negatively because boys use fat

Table 1. Variation of age at menarche

<table>
<thead>
<tr>
<th>Population</th>
<th>Age at menarche (yr)</th>
<th>Life style</th>
<th>Ethnic</th>
<th>Race</th>
<th>Source</th>
</tr>
</thead>
<tbody>
<tr>
<td>Arfak</td>
<td>12.2</td>
<td>Subsistant farmer</td>
<td>Arfak</td>
<td>Australoid</td>
<td>Present study</td>
</tr>
<tr>
<td>Naga village</td>
<td>14.5</td>
<td>Rural</td>
<td>Sundanese</td>
<td>Mongoloid</td>
<td>Vidiwati 2009</td>
</tr>
<tr>
<td>Pekalongan</td>
<td>13.3</td>
<td>Rural</td>
<td>Javanese</td>
<td>Mongoloid</td>
<td>Ulinmuha 2008</td>
</tr>
<tr>
<td>Bogor</td>
<td>12.2</td>
<td>Urban</td>
<td>Sundanese</td>
<td>Mongoloid</td>
<td>Suhartini 2007</td>
</tr>
<tr>
<td>Bogor</td>
<td>12.0</td>
<td>Urban</td>
<td>Sundanese</td>
<td>Mongoloid</td>
<td>Ayumi 2002</td>
</tr>
<tr>
<td>Jogjakarta</td>
<td>12.3</td>
<td>Urban</td>
<td>Javanese</td>
<td>Mongoloid</td>
<td>Hernawati 2002</td>
</tr>
<tr>
<td>NCHS/WHO</td>
<td>12.8</td>
<td>Urban</td>
<td>-</td>
<td>Caucasoid Negroid</td>
<td>WHO 1995</td>
</tr>
</tbody>
</table>

Table 2. Classification of BF based on Bio-impendence analysis on Arfak children

<table>
<thead>
<tr>
<th>BF classification</th>
<th>Girls</th>
<th>Boys</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>n = 148</td>
<td>Percentage (%)</td>
</tr>
<tr>
<td>Thin</td>
<td>30</td>
<td>20.3</td>
</tr>
<tr>
<td>Thin fat</td>
<td>-</td>
<td>5.1</td>
</tr>
<tr>
<td>Normal</td>
<td>76</td>
<td>51.4</td>
</tr>
<tr>
<td>Normal fat</td>
<td>18</td>
<td>12.2</td>
</tr>
<tr>
<td>Overweight fat</td>
<td>24</td>
<td>16.2</td>
</tr>
</tbody>
</table>
mass for the occurrence of spermatheca. BF then showed a phenomenon of adiposity rebound after spermatheca. BF growth rate reached the lowest point at the age 16 years old, and then increase linearly with age through adolescence until adulthood at age 23 years old. Several studies show the lowest point of adiposity rebound as indicated by BMI tend to occur at the childhood phase between 5 and 7 years old (Kuczynski et al., 2002; Cole 2004; Malina et al., 2004; Williams & Goulding 2009). The pattern of post-spermatheca adiposity rebound of Arfak boys which was measured by BF at adolescence phase might be a unique character of Austravid race. This phenomenon is not seen in other growth rate of body size of Arfak children.

In conclusion, in Arfak population average age at menarche is 12.2 years, while average age at spermatheca is 13.6 years. Arfak girls showed fast life history strategy as adaptive response to risk of mortality caused by malaria diseases. This factor is potentially important component in understanding the evolution of younger age at menarche of Arfak girls. Gonad maturation of Arfak children achieved one year after the peak of skeletal maturation, and just before or at the same time of maximum growth rate of somatic maturation. Girls and boys accumulate BF before puberty to be used as energy reserve for the occurrence of gonad maturation.

Measurement of first age at reproduction of Arfak tribe was not done in this study. This character is also a plastic response in understanding the human life history. We hope future research will put more attention to this character.

REFERENCES

