Indonesian Fisheries Research Journal is the English version of fisheries research journal. The first edition was published in 1994 with once a year in 1994. Since 2005, this journal has been published twice a year on JUNE and DECEMBER.

Head of Editor Board:
Prof. Dr. Ir. Endi Setiadi Kartamihardja, M.Sc.

Members of Editor Board:
Prof. Dr. Ir. John Haluan, M.Sc.
Prof. Dr. Ir. Subhat Nurhakim, M.S.
Dr. Ir. Wudianto, M.Sc.
Prof. Dr. Ir. Indra Jaya, M.Sc.

Referees for this Number:
Prof. Dr. Ir. Ari Purbayanto, M.Sc. (Bogor Agricultural Institute)
Prof. Dr. Ir. Setyo Budi Susilo, M.Sc. (Bogor Agricultural Institute)
Dr. Ir. Augy Syahailatua (Research Center for Oceanography- The Indonesian Institute of Sciences)

Managing Editors:
Ir. Chairulwan Umar, M.Si.
Eli Nurcahyani

Published by:
Agency for Marine and Fisheries Research

Manuscript send to the publisher:
Indonesian Fisheries Research Journal
Research Center for Capture Fisheries
Jl. Pasir Putih I Ancol Timur Jakarta 14430 Indonesia
Phone (021) 64711940
Fax: (021) 6402640
Email:drprpt2009@gmail.com

PREFACE

Indonesian Fisheries Research Journal Volume 15 Number 1 June 2009 is the first publication of Research Center for Capture Fisheries in 2009. The second number of journal will be published in December 2009. This journal is expected to expand communication among fisheries scientists entirely part of the country as well as other scientific in the tropical countries. This journal is financially supported by the Research Center for Capture Fisheries, budgeting F.Y. 2009.

This volume contains one article discussing of heavy metal (Ni, Cr) at the bottom layer of Matano Lake, South Sulawesi and the rest five figuring out marine fisheries resources relating to taxonomy of eightbar grouper, biodiversity of sharks and rays, biological reproductive of estuarine fishes as well as the blue spotted maskray, and Arafura Fisheries management of red snapper.

We would like to thank to the referees for their effort and contribution in reviewing and correcting the manuscripts.

Editor
<table>
<thead>
<tr>
<th>Title</th>
<th>Authors</th>
<th>Pages</th>
</tr>
</thead>
<tbody>
<tr>
<td>PREFACE</td>
<td></td>
<td>i</td>
</tr>
<tr>
<td>CONTENTS</td>
<td></td>
<td>iii</td>
</tr>
<tr>
<td>Concentration of Nickel (Ni) and Chromium (Cr) in Sediment and Suso Snail (Tylomelania patriarchalis) at Bottom Layer of Matano Lake, South Sulawesi</td>
<td>Kamaluddin Kasim and Mas Tri Djoko Sunarno</td>
<td>1-7</td>
</tr>
<tr>
<td>Changes to the Red Snapper Fisheries in the Arafura Sea Fisheries Management Area</td>
<td>Siti Nuraini and Tri Ernawati</td>
<td>9-16</td>
</tr>
<tr>
<td>Biodiversity of Sharks and Rays in South-Eastern Indonesia</td>
<td>Dharmadi, Fahmi, and William White</td>
<td>17-28</td>
</tr>
<tr>
<td>Size at First Maturity of the Blue Spotted Maskray, Neotrygon kuhli in Indonesian Waters</td>
<td>Fahmi, Mohammad Adrim, and Dharmadi</td>
<td>29-35</td>
</tr>
<tr>
<td>Biological Reproductive of Estuarine Fish Comparing Between Demersal (Long Tongue Sole, Cynoglossus lingua) and Pelagical (Mustached Thryssa, Thryssa mystax) Assemblages</td>
<td>M. Muklis Kamal and Mas Tri Djoko Sunarno</td>
<td>37-42</td>
</tr>
<tr>
<td>First Record of Eightbar Grouper, Epinephelus octofasciatus Griffin, 1926 (Perciformes: Serranidae) from Indonesia</td>
<td>Teguh Peristiwady</td>
<td>43-48</td>
</tr>
</tbody>
</table>
CONCENTRATION OF NICKEL (Ni) AND CHROMIUM (Cr) IN SEDIMENT AND
SUSO SNAIL (Tylomelania patriarchalis) AT BOTTOM LAYER OF MATANO LAKE,
SOUTH SULAWESI

Kamaluddin Kasim and Mas Tri Djojo Sunarno
Researcher in Research Center for Capture Fisheries-Ancol, Jakarta
Received May 6-2009; Received in revised from May 18-2009; Accepted May 28-2009

ABSTRACT

Research on nickel (Ni) and chromium (Cr) concentration in sediment and meat of suso snail (Tylomelania patriarchalis) collected from bottom layer of Lake Matano, South Sulawesi, was conducted on July-August 2004. Research station was established purposely according to a distance from source of industrial activities, namely station A (25 km), 14 station B (14 km), station C (5 km), and station D (7 km), respectively. These stations had a difference distance of about 50 m from off-shore of the lake. Each station was divided by three substation having 75-100 m in distance. Samples of sediment and suso snail were collected at the station using Ekman Grab. The samples were kept in labelled plastic bag and then put in cool box at 4°C as a subject to observing in laboratorium. Concentrations of Ni and Cr were determined using Atomic Absorption Spectrofotometry method. The results showed that the highest Ni concentration in sediment was observed in station C (5,277.5 mg/kg) and significantly difference (p<0.01) to other sampling stations. Concentration of Cr was not significance in each station. The highest concentration of the metals in the snail was observed in station C (0.56 mg/kg) for Cr and in station B (293.84 mg/kg) for Ni.

KEYWORDS: nickel, chromium, sediment, suso snail, Tylomelania patriarchalis, Matano Lake

INTRODUCTION

One of area in Matano Lake surrounding-Soroako City, South Sulawesi, has been used as the biggest nickel mining activity in Indonesia. Mining involves a series of land digging and destroying activities, respectively to explore minerals content using a material containing heavy metal. Waste of these activities is a slurry containing heavy metals. During rainy season particularly, water run off will bring the waste into the waters of Lake Matano and possibly affect the environment surrounding the mining activities.

Palar (1994) stated that heavy metals in the waters would sediment through particle binding processes and accumulate in the bottom layer of the waters. Therefore, concentration of the heavy metals in the bottom layer was higher than in the water body as well as the aquatic organism.

Bentos organisms living in the bottom layer of the waters can be used as a biological indicator for water pollution of rivers as well as lake. Suso snail (Tylomelania patriarchalis) is one of macrozoobentos organism which is abundance in Matano Lake and consumed by the peoples surrounding the lake. Therefore, data of heavy metals concentration at the bottom layer of the waters having mining activities is required to determine a status of water pollution, but there is a limit information in Matano Lake.

Nickel (Ni) endangers to human health. Direct contact of Ni salts solution to human skin could affect dermatitis, whilst breathing Ni affects on lung cancer (Effendie, 2000). According to Sudarmaji et al. (2006), chromium (Cr) could worst affect on respiratory tract, skin, blood vessel, and knee.

Nickel of 237 and 301 mg/L gives death effect on larvae and embryo of mussels, respectively. Eisler (1998) reported that total death of fresh water snail and mollusc embryos were at a level of 237 dan 301 mg/L, respectively. Value of LC50 for fresh water snail Juga plicifera was 237 mg Ni/L for 96 exposure hours, whilst mollusc adult of Mya arenaria has LC50 at 112 mg Ni/L for 168 exposure hours. Chromium also affect on lethal death for some aquatics animal. Vutukuru (2005) stated that LC50 for Labeo rohita was 39.4 mg Cr/L for 96 exposure hours.

It had been approved that Ni and Cr in waters would be deposited in bottom layer of the waters. Therefore, a research was done for observing Ni and Cr concentration on sediment and suso snail at the bottom layer of Lake Matano, South Sulawesi.

MATERIALS AND METHODS

The research was conducted on July-August 2004 in Matano Lake, South Sulawesi. Some stations were established proposively in 4 places with a distance of 50 m from offshore of the lake. Determination of the
station was based on distance of a source of mining activity, namely station A (25 km), station B (14 km), station C (5 km), and station D (7 km) respectively. Each station was divided by three substation having 75-100 m in distance (Figure 1).

In each station, samples of sediment and suso snail were collected using Ekman Grab at 1-5 m water depth according to availability of snail. The mud and snail was separated using hand, kept in labeled plastic bag and then hold in cool box at a temperature level of 4°C. Only 12 snails were taken from each station as a subject to laboratory analysis.

Sediment was dried using room temperature for 48 hours in the laboratory. There after, dried sediment was sieved using sieve net of 0.125 mm in diameter and taken out in amount of 2 g as a subject to heavy metal analysis. The sediment sample was diluted using nitrat acid 65% and heated using hot plate at temperature range of 70-80°C, then the diluted samples was dried and ready to be analyzed using Atomic Adsorption Spectrofotometry Perkin Elmer Analyst 7,000. Each sample was analyzed with 3 replicates (APHA, 1980).

Data was analyzed statistically using Kruskall-Wallis and Mann-Whitney test for evaluating differences of nickel and chromium concentration. The SPSS program version 15 was used to analyze the data. Analysis of regression was used to know a relationship between nickel and chromium concentration in sediment and suso snail. Model of regression is:

\[Y = a + bX \]

(1)

where:

- \(Y \) = concentration of nickel or chromium in suso snail (mg/kg)
- \(X \) = concentration of nickel or chromium in sediment (mg/kg)
- \(a \) = intercept
- \(b \) = slope

RESULTS AND DISCUSSION

The data showed that the concentration of nickel in each sampling station was relatively high (Figure 2). The highest concentration was 5,277.5 mg/kg found in station C relatively close to the nickel processing plant (±5 km). The lowest nickel concentration was found in station A which was 2,009.83 mg/kg. Station A was the furthest located 25 km away from nickel processing plant. The highest nickel concentration in station C might be caused by it location near from mine activities such as open mining soil and processing plant. It caused run-off sediment entering to the Matano Lake water column marked by yellow brown sediment colors likely found in station C.

Land clearing in mine activity at Matano Lake surrounding caused run-off enter to the Matano Lake waters during rainy season. Connel & Miller (1984)
stated that open mining activities leaving the soil surface exposed could cause soil and rock decaying process rapidly and carrying some minerals and metals in water column.

Haffner (2000) in his latest investigation stated that nickel concentration in sediment at Lake Matano varied from 12,000-30,000 mg/kg. Moore (1991) in Effendie (2000) stated that nickel concentration naturally found in soil about 75 mg/kg. Moreover, Cataldo & Wildug (1978) stated that nickel concentration naturally found in soil varied from 10-1,000 ìg/g.

Nickel concentration in sediment was high at sampling station D, located about 7 km from nickel processing plant and mining area. Average of nickel concentration in sediment found in station D was high, up to 3,681.25 mg/kg. As close to the nickel processing plant, the station received more waste. That was proved by waste concentration in inlet locating in station D (Figure 1). The Kruskall-Wallis test showed that nickel concentration in sediment at each sampling station was significantly different (p<0.01). It meant that sampling station C and D were the most receiving nickel waste from processing plant and mining area whilst sampling station A and B were less.

Nickel concentration in suso meat at each sampling station was relatively high (Figure 3). The highest average nickel concentration was observed at station B (293.84 mg/kg) and the lowest was at station C (50.813 mg/kg). The Kruskall-Wallis test inter-sampling station showed that average nickel...
concentration in meat of suso snail was significantly different (p<0.01). Tack & Verloo (1995) informed that metal concentration in benthos not only depend on characteristic of metal itself but also occurrences of other elements and type of sediment fractions.

Mance (1987) stated that several factors can influence the accumulation of heavy metal within organism such as food, maturity, and size of organism. Suso samples were taken in station B having average weight of 6.918 g and average of body's length was 4.818 cm. High nickel concentration in meat of suso snail at station B probably caused by different sediment compositions compared to other stations. Sediment composition analyze showed that sediment in station B consisted of 84.3% sand, 12.8% clay-sand, and 5.64% clays whilst other stations had not clay fractions observed.

The correlation between nickel concentration in sediment and nickel concentration in meat of suso snail was linear, following the equation $Y=0.0152X-28.348\ (r^2=0.7885)\ n=16$, where $Y =$ nickel concentration in meat of suso snail; whilst $X =$ nickel concentration in sediment. Coefisien of correlation (r) was 0.8291, meaning that it there were very significant correlation between nickel concentration in sediment and meat of suso snail (Figure 4).

The investigation on correlation between metal concentration in sediment to the metal concentration in biota have been investigated by Umar et al. (2001) in Pare-Pare bay of South Sulawesi. He reported that copper (Cu) concentration in bodys’ tissue of mollusc shell (Marcia sp.) was linear to copper concentration in water and sediment.

Average chromium concentration in sediment was observed at every sampling station relatively similar (Figure 5). The highest value of concentration of chromium (Cr) at station A was up to 8.00 mg/kg and the highest value than other sampling station. The lowest concentration was found in station C (7.06 mg/kg). Statistically, chromium concentration in sediment inter-station was not significantly different (p>0.05).

The chromium concentration in the bottom layer sediment of Matano Lake was relatively high. Cataldo & Wildug (1978) stated that chromium concentration in soil naturally varied from 5-3,000 ig/g with its value 100 ig/g.

Fishbein (1981) stated that chromium naturally occurs in form of Cr$^{2+}$ to Cr$^{6+}$ ion which is toxic to the aquatic organisms. Chromium is never found in a single element but generally compound in form of chromites (FeOCr$_2$O$_3$). Furthermore, chromium concentration in soil varied from a few concentrations to 250 ppm in form of chromoxide compounds. Chromium was released by soil in a few quantity because it is insoluble characteristic in nature. Even though, water run-off can cause chromium entrance to the water column and then accumulate in sediment.

The highest average chromium concentration of suso snail was observed highest at station C (up to 0.614 mg/kg) and the lowest at station D (0.32 mg/kg) (Figure 6). Kruskall-Wallis test showed that
Concentration of Nickel (Ni) Matano Lake, South Sulawesi (Kasim, K. & M.T.D. Sunarno)

Figure 5. Average chromium concentration of sediment in each sampling station.

Figure 6. Chromium concentration of suso snail in each sampling station.

Figure 7. Correlation between chromium concentration in sediment and suso snail at Matano Lake.
average of chromium concentration in suso snail was significantly different (p<0.05).

Station C is one of the sampling stations close to the nickel processing plant. The highest chromium concentration in suso snail meat at Station C was probably influenced by chromium concentration in sediment. Chromium concentration in sediment was nearly similar at each sampling station, except in suso snail. Kruskall-Walis test showed that chromium concentration in suso snail was very significantly different (p<0.01) in each sampling station. This also may indicate that suso snail has a different ability in absorbing metal.

Regression analysis showed that chromium concentration in suso snail was linear and positive following the equation Y=0.0883X-0.1981, where Y = chromium concentration in suso snail, and X = chromium concentration in sediment. R² is 0.5807 whilst coefficient correlation (r) is 0.7620 (Figure 7).

High concentration of chromium at each sampling station indicated that suso snail was not properly consumed. WHO (2000) determined that chromium concentration in food is not exceed the threshold limit 0.05 mg/kg.

CONCLUSION

1. The highest Ni concentration in sediment was observed in station C (5,277.5 mg/kg) and significantly different (p<0.01) to other sampling stations. Concentration of Cr was not significant in each station. The highest concentration of the metals in the snail was observed in station C (0.56 mg/kg) for Cr and in station B (293.84 mg/kg) for Ni.

2. Concentration value of nickel and chromium in suso snail (Tylomelania patriarchalis) in Matano Lake was lower than in sediment. There is positive correlation between nickel and chromium concentration in sediment and suso snail (Tylomelania patriarchalis).

ACKNOWLEDGMENT

This research was budgeted by individual funding. I would like to thank to the head and staffs of Laboratorium Dinas Perindustrian dan Perdagangan Provinsi Sulawesi Selatan who help us to analyze material samples.

REFERENCES

INDONESIAN FISHERIES RESEARCH JOURNAL
Instructions for Authors

Scope
Indonesian Fisheries Research Journal publishes research results on resources, oceanography and limnology for fisheries, fisheries biology, management, socio-economic and enhancement, resource utilization, aquaculture, post harvest, of marine, coastal and inland waters.

Manuscripts submission
Manuscripts submitted to the Journal must be original with clear definition of objective, materials used and methods applied and should not have been published or offered for publication elsewhere. The manuscripts should be written in English, in double-spaced typing on one side A4-size white papers. Three copies of the manuscripts and a disk containing the manuscript file (s) produced using MS Word must be submitted to the Managing Editor, Jl. Pasir Putih I Ancol Timur, Jakarta 14430, Indonesia, E-mail: drprpt2009@gmail.com. There are no page charges for the manuscripts accepted for publications, unless otherwise indicated below.

Manuscripts preparation
- A title page should be provided which shows the title and the name(s) of the author(s). The author(s)' position and affiliation should be written as footnotes at the bottom of the title page.
- Title should not be more than 15 words.
- Abstract summarizes the study is not more than 250 words. Keywords (3-5) must be provided and conform with Agrovocs.
- Introduction should concisely establish the relate to which the article concerns, the purpose and the importance of the work. Do not use any sub-headings.
- Materials and Methods should clearly and concisely describe the experiment with sufficient detail for independent repetition.
- Results are presented with optimum clarity with unnecessary detail. No same results should be presented in both tables and figures. Tables (double spaced, same font size with text, no vertical line, lower case superscript letters to indicate, footnotes), and illustration/figures should be printed on separate sheets and given arabic number consecutively. Illustration/figures should be submitted in original (1) and copied (2) forms and be sufficiently sharp for reproduction. Photographs are preferably black and white on glossy papers with good contrast. Color photographs of good quality are acceptable but the cost of reproduction must be paid for by the author(s). Exemption for bearing the cost can be sought from the publisher by written request.
- Conclusion should be short with regard to the title, objectives, and discussion of results.
- Acknowledgement, if necessary, should be kept minimum (less than 40 words).
- References should be cited in the text by the author(s)’ family or last name and date in one or two forms: Wang (1985) or (Wang, 1985). For references with more than two authors, cite the first author plus et al. Full citation in alphabetical order is required for the references list in the following style:

Unpublished materials should not be used, except for thesis which is cited as follows:
- Acronyms or uncommon abbreviations must be given in full with the first mentions; new abbreviations should be coined only for unwieldy name and should not be used at all unless the names occur frequently.
- Latin name and family of the species should be given besides its common name at first mention in the manuscript, and the common name only for the next mentions.
- SI Systems should be used for all measurements.
- Reprint: A free reprint of the journal issue in which the paper is published will be sent to the author.